Method for targeted change in physico-chemical properties of native starches by the method of combinator
https://doi.org/10.47612/2073-4794-2021-14-1(51)-16-30
Abstract
A detailed granulometric analysis of native starches of various botanical origin was carried out: sorghum with a granule size of 3,5–21,7 µm and an average size of 11,0 µm, wheat with a granule size of 2,8–30,7 µm and an average size of 12,4 µm, rice with a granule size of 2,7–7,9 µm and an average size of 5,3 µm, triticale with a granule size of 4,0–30,7 µm and an average size of 13,2 µm, rye with a granule size of 4,9–42,8 µm and an average size of 21,2 µm, pea with a granule size of 6,1–32,3 µm and an average size of 20,4 µm, chickpea with a granule size of 6,0–25,6 µm and an average size of 14,8 µm, amaranth with a granule size of 0,5–1,5 µm and an average size of 1,1 µm, barley with a granule size of 3,0–21,4 µm and an average size of 10,9 µm, tapioca with a granule size of 2,8–31,2 µm and an average size of 10,6 µm, oat with a granule size of 3,96–14,91 µm and an average size of 7,39 µm, potato with a granule size of 7,7–60,0 µm and an average size of 21,7 µm, corn with a grain size of 3,6–19,2 µm and an average size of 9,8 µm, corn high amylose with a granule size of 3,3–11,65 µm and an average size of 7,11 µm, corn high amylopectin with a granule size of 4,26–18,26 µm and an average size of 9,94 µm, wheat from the «Shortandinskaya 95» variety With a granule size of 1,74–20,48 µm and an average size of 7,05 µm, wheat from the «Astana» variety with a granule size of 2,52–26,74 µm and an average size of 8,30 µm, wheat from the «Akmola-2» variety with a granule size of 2,43–26,22 µm and an average size of 8,11 µm.
Based on the granulometric analysis of native starch, an innovative, highly effective, economical and environmentally friendly method of purposefully changing the physicochemical properties of native starches of various botanical origin was developed using the combinatorial method.
About the Authors
A. A. ZabolotetsBelarus
Zabolotets Anastasiya A. — M.S., Graduate Student
29, Kozlova st., 220037, Minsk
V. V. Litvyak
Russian Federation
Litvyak Vladimir V. — D.Sc. (engineerin), Associate Professor
Nekrasov Str., 11, Kraskovo, Luberetskiy District, Moscow Region, 140051
A. I. Ermakov
Belarus
Ermakov Alexey I. — Ph.D. (engineerin), Associate Professor
65, Nezavisimosty avenue, 220013, Minsk
References
1. Kang, I.-J. Production of Modified Starches by Gamma Irradiation / I.-J. Kang, M.-W. Byun, H.-S. Yook, C.-H. Bae, H.-S. Lee, J.-H. Kwon, C.-K. Chung // Radiation Physics and Chemistry. 1999. Vol. 54, no. 4. P. 425–430.
2. SA Sofi. Resistant starch as functional ingredient: A review / SA Sofi, Anjum Ayoub, Awsi Jan // International Journal of Food Science and Nutrition. 2017. Vol. 2, no. 6. P. 195–199.
3. Бdina L. Santana. New Starches are the Trend for Industry Applications: A Review / Бdina L. Santana, M. Angela A. Meireles // Food and Public Health. 2014. Vol. 4, no. 5. P. 229–241.
4. James N. BeMiller. Starch. Chemistry and Technology / James N. BeMiller, Roy L. Whistler. — Publisher: Academic Press; 3rd edition (April 6, 2009). 894 pp.
5. Schoenlechner, Regine. Physically modified starches: A review / Regine Schoenlechner // Journal of Food Agriculture and Environment. 2011. Vol. 9, no. 1. P. 27–29.
6. Sameh A. Korma. Chemically Modified Starch and Utilization in Food Stuffs / Sameh A. Korma, KamalAlahmad, Sobia Niazi, Al-Farga Ammar, Farah Zaaboul, Tao Zhang // International Journal of Food Sciences and Nutrition. 2016. Vol. 5, no. 4. P. 264–272.
7. Cai, J. Crystalline and structural properties of acid-modified lotus rhizome C-type starch / J. Cai, C. Cai, J. Man, Y. Yang, F. Zhang, C. Wei // Carbohydr Polym. 2014. Vol. 102. P. 799–807.
8. Bulйon, A. Starch granules: structure and biosynthesis / A.bBulйon, P. Colonna, V. Planchot, S. Ball // International Journal of Biological Macromolecules. 1998. Vol. 23, no. 2. P. 85–112.
9. Namazi, H. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles / H. Namazi, F. Fathi, A. Dadkhah // Scientia Iranica. 2011.Vol. 18, No. 3. P. 439–445.
10. He, J. Slowly Digestible Waxy Maize Starch Prepared by Octenyl Succinic Anhydride Esterification and Heat—Moisture Treatment: glycemic Response and Mechanism / J. He, J. Liu, G. Zhang // Biomacromolecules. 2007. Vol. 9, no. 1. P. 175–184.
11. Lars Passauer. Synthesis and characterisation of starch phosphates / Lars Passauer, Hans Bender, Steffen Fischer // Carbohydrate Polymers. 2010. Vol. 82, no. 3. P. 809–814.
12. D. Le Corre. Starch nanoparticles: a review / D. Le Corre, J. Bras, A. Dufresne // Biomacromolecules. 2010. Vol. 11, no. 5. P. 1139–1153.
13. Kaur, B. Progress in starch modification in the last decade / B. Kaur, F. Ariffin, R. Bhat, A. Karim // Food Hydrocolloids. 2012. Vol. 26, no. 2. P. 398–404.
14. Solomina L.S., Solomin D.A. Issledovaniya protsessa polucheniya amilopektinovogo fosfatnogo krakhmala. [Research of the process of obtaining amylopectin phosphate starch] HIPS. 2018. no 3. P. 27–35 (in Russian).
15. Ruskina A.A., Popova N.V., Naumenko N.V., Ruskin D.V. Modifikatsiya krakhmala s pomoshch`yu ul`trazvukovogo vozdeystviya kak instrument izmeneniya yego tekhnologicheskikh kharakteristik. [Modification of starch using ultrasonic action as a tool for changing its technological characteristics] Vestnik YUUrGU. Food and biotechnology. 2017. Т. 5, no 3. P. 12–20 (in Russian).
16. Ruskina A.A., Popova N.V., Ruskin D.V. Modifikatsiya krakhmala s pomoshch`yu ul`trazvukovogo vozdeystviya kak instrument izmeneniya yego tekhnologicheskikh kharakteristik. [Modification of starch using ultrasonic action as a tool for changing its technological characteristics] Vestnik YUUrGU. Food and biotechnology. 2018. Т. 6, no 1. P. 69–76 (in Russian).
17. Hlestin V.K. Paltek S.E., Kolchanov N.A. Geny-misheni dlya polucheniya sortov kartovelya (Solanum tuberosum L.) s zadannymi svoystvami krakhmala [Target genes for obtaining potato varieties (Solanum tuberosum L.) with specified starch properties]. Potato growing: science and technology. 2017. Т. 52, no 1. P. 25–36 (in Russian).
18. Kryazhev V.N., Romanov V.V., Shirokov V.A. Posledniye dostizheniya khimii I tekhnologii proizvodnykh krakhmala [Resent advances in chemistry and technology of starch derivatives]. Chemistry of plant raw matetials. 2015, no 1. P. 5–12 (in Russian).
19. Suvorova A.I., Tyukova I.S., Trufanova E.I. Biorazlagayemyye polimernyye materially na osnove krakhmala [Biodegradable starch-based polymeric materials]. Advances in chemistry. 2000. Т. 69, no 5. P. 494–504 (in Russian).
20. Litvyak V., Alekseenko M., Kanarskiy A. Formirovaniye krakhmal`noy granuly I mekhanizm khimicheskoy modifikatsii krakhmala [Formation of starch granules and the mechanism of chemical modification of starch]. Science and innovation. 2016, no 3. P. 63–67 (in Russian).
21. Kaptelova E.K., Lukin N.D., Tkachenko Ye.I. Vliyaniye tekhnologicheskikh parametrov na reologicheskiye svoystva poperechno-svyazannykh krskhmalov [Influence of technological parameters on the rheological properties of the cross-linked starches]. Achievement of science and technology of the AIC. 2014. Т. 28, no 10. P. 69–71 (in Russian).
22. Kaptelova E.K., Lukin N.D., Ahaeva S.M. Sovershenstvovaniye sukhogo sposoba kationirovaniya krakhmala [Improvement of the dry method of starch cationization]. HIPS. 2018, no 2. P. 48–52 (in Russian).
23. Kaptelova E.K., Nikitina M.F., Kuzina L.B., Kasilov V.P., Kislogubova O.N. Izmeneniye fizikokhimicheskikh i reologicheskikh svoystv kukuruznogo krakhmala v protsesse kationirovaniya s primeneniyem metoda nelineynogo volnovogo dispergirovaniya [Changes in the physicochemical and rheological properties of corn starch in the process of cationization using the method of nonlinear wave dispersion]. Achievement of science and technology of the AIC. 2019. Т. 33, no 8. P. 79–82 (in Russian).
24. Choudhary, O.P. Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components / O.P. Choudhary, Priyanka Choudhary // International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 6, no. 5. P. 1877–1882.
25. McMullan, D. Von Ardenne and the scanning electron microscope / D. McMullan // Proc. Roy. Microsc. Soc. 1988. Vol. 23. P. 283–288.
26. McMullan, D. Scanning electron microscopy 1928–1965 / D. McMullan // Scanning. 2006. Vol. 17, No. 3. P. 175.
27. Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis / Ludwig Reimer (Author), P.W. Hawkes (Editor). Publisher: Springer (December 1, 2010). 543 pp.
28. Fndreev N.R. Osnovy proizvodstva nativnykh krakhmalov [Basic production of native starches]. Moscow. 2001. 289 pp. (in Russian).
29. Kerr R.V., Cezar Zh.V., Kristensen L.M. Khimiya i tekhnologiya krakhmala [Chemistry and technology of starch]. Moscow. 1956. 579 pp. (in Russian).
30. Gudvin T., Merser Ye. VVedeniye v biokhimiyu rasteniy [Introduction to plan biochemistry] Moscow. 1986. Т. 1–2 (in Russian).
31. Kretovich V.L. Biokhimiya rasteniy: ucheb. [Plant biochemistry: textbook]. Moscow. 1986. 503 pp. (in Russian).
32. Landau L.D., Lifshic E.M. Kvantovaya mekhanika (nereiyativistskaya teoriya) [Quantum mechanics (non-relativistic theory)]. Moscow. 2004. 800 pp. (in Russian).
33. Information Internet: Quant: From Wikipedia https://ru.wikipedia.org/wiki/Квант. — Entry date: 03.11.2020 г. (in Russian)
34. Daffus K., Daffus Dzh. Uglevodnyy obmen rasteniy [Carbohydrate metabolism of plants]. Moscow. 1987. 176 pp. (in Russian).
35. Volper A.P., Aziya A.P. Kvadrat Pirsona [Pearson square] Quant. 1973, no 3. P. 61 (in Russian).
36. Information Internet: From Wikipedia https://ru.wikipedia.org/wiki/Разбавление. — Entry date: 22.06.2020 г. (in Russian)/
37. Pisarenko V.V. Spravochnik khimika-laboranta [Laboratory Chemists Handbook] Moscow. 1974. 238 pp. (in Russian).
38. Grosheva L.P. Rastvory. Raschet sostavov. Razbavleniye, smesheniye, kontsentrirovaniye rastvorov. Raschet sostava I kharakteristik tverdykh materialov: Metodicheskoye posobiye [Solution. Calculation of compositions. Dilution, mixing, concentration of solutions. Calculation of the composition and characteristics of solid materials: Methodological guide]. Velikiy Novgorod. 2006. 13 pp. (in Russian).
39. Information Internet: From Wikipedia: https://ru.wikipedia.org/wiki/Пропорция_(математика) — Entry date: 03.11.2020 г (in Russian).
40. Peryushev N.N., Zabolotets A.A., Litvyak V.V. ТУ BY 190239501.955-2020 «Krakhmal nativnyy kombinatornyy» [«Combinatorial native starch»]. Centre for Foodstuffs of the National Academy of Sciences of Belarus. Minsk. 2020. 19 pp. — State registration №059802 of 27.09.2020. (in Russian).
Review
For citations:
Zabolotets A.A., Litvyak V.V., Ermakov A.I. Method for targeted change in physico-chemical properties of native starches by the method of combinator. Food Industry: Science and Technology. 2021;14(1):16-30. (In Russ.) https://doi.org/10.47612/2073-4794-2021-14-1(51)-16-30